21 research outputs found

    On the Enhancement of the Thermal Conductivity of Graphene-Based Nanofluids

    Get PDF
    Heat transfer fluids have been extensively used in both low-temperature and high temperature applications (e.g. microelectronics cooling and concentrated solar power). However, their low thermal conductivity is still a limit on performance. One way to enhance thermal properties is to disperse nanomaterials, such as graphene flakes in the base fluid. In this work, we have developed highly stable DMAc-graphene nanofluids with enhanced thermal properties. Furthermore, the displacement of several Raman bands as a function of graphene concentration in DMAc suggests that the solvent molecules are able to interact with graphene surfaces strongly

    From thermal to electroactive graphene nanofluids

    Get PDF
    Here, we describe selected work on the development and study of nanofluids based on graphene and reduced graphene oxide both in aqueous and organic electrolytes. A thorough study of thermal properties of graphene in amide organic solvents (N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone) showed a substantial increase of thermal conductivity and specific heat upon graphene integration in those solvents. In addition to these thermal studies, our group has also pioneered a distinct line of work on electroactive nanofluids for energy storage. In this case, reduced graphene oxide (rGO) nanofluids in aqueous electrolytes were studied and characterized by cyclic voltammetry and charge-discharge cycles (i.e., in new flow cells). In addition, hybrid configurations (both hybrid nanofluid materials and hybrid cells combining faradaic and capacitive activities) were studied and are summarized here

    Heat transfer fluids: From fundamental aspects of graphene nanofluids at room temperature to molten salts formulations for solar-thermal conversion

    Get PDF
    Los fluidos de transferencia de calor, y en particular los nanofluidos, se pueden considerar un elemento esencial en diversos sectores industriales y su rendimiento es clave para una adecuada aplicación en tecnologías que van desde la gestión térmica y la refrigeración, a la generación de energía solar térmica y eléctrica mediante el uso de intercambiadores de calor. Estas industrias necesitan fluidos de transferencia de calor con un rango de temperatura del líquido más amplio y mejores prestaciones en la transferencia de calor que los fluidos convencionales. Todos los fluidos parecen beneficiarse de la dispersión de nanopartículas sólidas, tanto aquellos usados en aplicaciones de baja temperatura y temperatura ambiente, como aquellos que funden a más alta temperatura (p. ej. sales fundidas). La dispersión de nanopartículas conduce a la obtención de nanofluidos que con frecuencia presentan mejores conductividades térmicas y/o calores específicos en comparación con los fluidos base. Sin embargo hay algunas excepciones. En la bibliografía podemos encontrar resultados contradictorios acerca de la mejora de las propiedades térmicas en nanofluidos, lo cual hace que sea necesario un estudio de estos materiales en mayor profundidad. Por otra parte, la naturaleza líquida de estos materiales plantea un verdadero desafío, tanto desde el punto de vista experimental como en relación al marco conceptual. El trabajo que se presenta en esta tesis ha abordado dos retos diferentes relacionados con los fluidos de transferencia de calor y los nanofluidos. En primer lugar, se llevó a cabo un estudio riguroso y sistemático de las propiedades térmicas, morfológicas, reológicas, de estabilidad, acústicas y vibracionales de nanofluidos de grafeno en disolventes orgánicos. Observamos un gran aumento de la conductividad térmica de hasta un 48% y un aumento del 18% en la capacidad calorífica de los nanofluidos de grafeno en N,N-dimetilacetamida (DMAc). También se observó una mejora significativa en los nanofluidos de grafeno en N,N-dimetilformamida (DMF) del orden del 25% y 12% para la conductividad térmica y la capacidad calorífica, respectivamente. El desplazamiento de varias bandas del espectro Raman de DMF y DMAc hacia altas frecuencias (máx. ~ 4 cm-1) al aumentar la concentración de grafeno, sugirió que éste tiene la capacidad de afectar a las moléculas de disolvente a larga distancia, en términos de energía vibracional. En paralelo, las simulaciones numéricas basadas en la teoría funcional de la densidad (DFT) y dinámica molecular (MD) mostraron una orientación paralela de DMF hacia el grafeno, favoreciendo la interacción π-π y contribuyendo a la modificación de los espectros de Raman. Además, se observó un orden local de las moléculas de DMF alrededor del grafeno, lo que sugiere que tanto este tipo especial de interacción como el orden local inducido pueden contribuir a la mejora de las propiedades térmicas del fluido. También se realizaron estudios similares en nanofluidos de grafeno disperso en 1-metil-2-pirrolidona, sin embargo, no se observó ninguna modificación de la conductividad térmica o de los espectros de Raman. Todas estas observaciones juntas sugieren que existe una correlación entre la modificación de los espectros vibracionales y el aumento de la conductividad térmica de los nanofluidos. En vista de los resultados, se discutieron y descartaron algunos de los mecanismos propuestos para explicar la mejora de la conductividad térmica en nanofluidos. La segunda línea de investigación se centró en el desarrollo y caracterización de nuevas formulaciones de sales fundidas con baja temperatura de fusión y alta estabilidad térmica. Con este propósito, se sintetizaron dos nuevas formulaciones de seis componentes basadas en nitratos con una temperatura de fusión de 60-75 °C y una estabilidad térmica de aprox. 500 °C. Por otro lado, la complejidad de las muestras llevó a establecer una serie de métodos experimentales que se proponen para la detección del punto de fusión de estos materiales como una alternativa a la calorimetría convencional, estas técnicas son: espectroscopia Raman, técnica 3ω y transmisión óptica.Heat transfer fluids and nanofluids constitute an important element in the industry and their performance is key to the successful application in technologies that go from heat management and cooling to heat exchangers in thermal-solar energy and electricity generation. These industries demand heat transfer fluids with a wider liquid temperature range and better thermal performance than the conventional fluids. From low-temperature fluids to high-temperature molten salts, these fluids seem to benefit from the dispersion of solid nanoparticles, leading to nanofluids which frequently feature improved thermal conductivities and/or specific heats as compared with the bare fluids. However, there are some exceptions. Contradictory reports make it necessary to study these materials in greater depth than has been usual. Yet, the liquid nature of these materials poses a real challenge, both from the experimental point of view and from the conceptual framework. The work reported in this thesis has tackled two different challenges related to heat transfer fluids and nanofluids. In the first place, a careful and systematic study of thermal, morphological, rheological, stability, acoustic and vibrational properties of graphene-based nanofluids was carried out. We observed a huge increase of up to 48% in thermal conductivity and 18% in heat capacity of graphene-N,N-dimethylacetamide (DMAc) nanofluids. A significant enhancement was also observed in graphene-N,N-dimethylformamide (DMF) nanofluids of approximately 25% and 12% for thermal conductivity and heat capacity, respectively. The blue shift of several Raman bands (max. ~ 4 cm-1) with increasing graphene concentration in DMF and DMAc nanofluids suggested that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. In parallel, numerical simulations based on density functional theory (DFT) and molecular dynamics (MD) showed a parallel orientation of DMF towards graphene, favoring π–π stacking and contributing to the modification of the Raman spectra. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the thermal properties of the fluid. Similar studies were also performed in graphene-N-methyl-2-pyrrolidinone nanofluids, however, no modification of the thermal conductivity or the Raman spectra was observed. All these observations together suggest that there is a correlation between the modification of the vibrational spectra and the increase in the thermal conductivity of the nanofluids. In light of these results, the mechanisms suggested in the literature to explain the enhancement of thermal conductivity in nanofluids were discussed and some of them were discarded. The second line of research focused on the development and characterization of novel molten salts formulations with low-melting temperature and high thermal stability. In this regard, two novel formulations of six components based on nitrates with a melting temperature of 60-75 °C and a thermal stability up to ~ 500 °C were synthesized. Moreover, the complexity of the samples led to establish a series of experimental methods which are proposed for the melting temperature detection of these materials as an alternative to conventional calorimetry. These methods are Raman spectroscopy, three-omega technique, and optical transmission

    Heat transfer fluids: From fundamental aspects of graphene nanofluids at room temperature to molten salts formulations for solar-thermal conversion

    No full text
    Los fluidos de transferencia de calor, y en particular los nanofluidos, se pueden considerar un elemento esencial en diversos sectores industriales y su rendimiento es clave para una adecuada aplicación en tecnologías que van desde la gestión térmica y la refrigeración, a la generación de energía solar térmica y eléctrica mediante el uso de intercambiadores de calor. Estas industrias necesitan fluidos de transferencia de calor con un rango de temperatura del líquido más amplio y mejores prestaciones en la transferencia de calor que los fluidos convencionales. Todos los fluidos parecen beneficiarse de la dispersión de nanopartículas sólidas, tanto aquellos usados en aplicaciones de baja temperatura y temperatura ambiente, como aquellos que funden a más alta temperatura (p. ej. sales fundidas). La dispersión de nanopartículas conduce a la obtención de nanofluidos que con frecuencia presentan mejores conductividades térmicas y/o calores específicos en comparación con los fluidos base. Sin embargo hay algunas excepciones. En la bibliografía podemos encontrar resultados contradictorios acerca de la mejora de las propiedades térmicas en nanofluidos, lo cual hace que sea necesario un estudio de estos materiales en mayor profundidad. Por otra parte, la naturaleza líquida de estos materiales plantea un verdadero desafío, tanto desde el punto de vista experimental como en relación al marco conceptual. El trabajo que se presenta en esta tesis ha abordado dos retos diferentes relacionados con los fluidos de transferencia de calor y los nanofluidos. En primer lugar, se llevó a cabo un estudio riguroso y sistemático de las propiedades térmicas, morfológicas, reológicas, de estabilidad, acústicas y vibracionales de nanofluidos de grafeno en disolventes orgánicos. Observamos un gran aumento de la conductividad térmica de hasta un 48% y un aumento del 18% en la capacidad calorífica de los nanofluidos de grafeno en N,N-dimetilacetamida (DMAc). También se observó una mejora significativa en los nanofluidos de grafeno en N,N-dimetilformamida (DMF) del orden del 25% y 12% para la conductividad térmica y la capacidad calorífica, respectivamente. El desplazamiento de varias bandas del espectro Raman de DMF y DMAc hacia altas frecuencias (máx. ~ 4 cm-1) al aumentar la concentración de grafeno, sugirió que éste tiene la capacidad de afectar a las moléculas de disolvente a larga distancia, en términos de energía vibracional. En paralelo, las simulaciones numéricas basadas en la teoría funcional de la densidad (DFT) y dinámica molecular (MD) mostraron una orientación paralela de DMF hacia el grafeno, favoreciendo la interacción π-π y contribuyendo a la modificación de los espectros de Raman. Además, se observó un orden local de las moléculas de DMF alrededor del grafeno, lo que sugiere que tanto este tipo especial de interacción como el orden local inducido pueden contribuir a la mejora de las propiedades térmicas del fluido. También se realizaron estudios similares en nanofluidos de grafeno disperso en 1-metil-2-pirrolidona, sin embargo, no se observó ninguna modificación de la conductividad térmica o de los espectros de Raman. Todas estas observaciones juntas sugieren que existe una correlación entre la modificación de los espectros vibracionales y el aumento de la conductividad térmica de los nanofluidos. En vista de los resultados, se discutieron y descartaron algunos de los mecanismos propuestos para explicar la mejora de la conductividad térmica en nanofluidos. La segunda línea de investigación se centró en el desarrollo y caracterización de nuevas formulaciones de sales fundidas con baja temperatura de fusión y alta estabilidad térmica. Con este propósito, se sintetizaron dos nuevas formulaciones de seis componentes basadas en nitratos con una temperatura de fusión de 60-75 °C y una estabilidad térmica de aprox. 500 °C. Por otro lado, la complejidad de las muestras llevó a establecer una serie de métodos experimentales que se proponen para la detección del punto de fusión de estos materiales como una alternativa a la calorimetría convencional, estas técnicas son: espectroscopia Raman, técnica 3ω y transmisión óptica.Heat transfer fluids and nanofluids constitute an important element in the industry and their performance is key to the successful application in technologies that go from heat management and cooling to heat exchangers in thermal-solar energy and electricity generation. These industries demand heat transfer fluids with a wider liquid temperature range and better thermal performance than the conventional fluids. From low-temperature fluids to high-temperature molten salts, these fluids seem to benefit from the dispersion of solid nanoparticles, leading to nanofluids which frequently feature improved thermal conductivities and/or specific heats as compared with the bare fluids. However, there are some exceptions. Contradictory reports make it necessary to study these materials in greater depth than has been usual. Yet, the liquid nature of these materials poses a real challenge, both from the experimental point of view and from the conceptual framework. The work reported in this thesis has tackled two different challenges related to heat transfer fluids and nanofluids. In the first place, a careful and systematic study of thermal, morphological, rheological, stability, acoustic and vibrational properties of graphene-based nanofluids was carried out. We observed a huge increase of up to 48% in thermal conductivity and 18% in heat capacity of graphene-N,N-dimethylacetamide (DMAc) nanofluids. A significant enhancement was also observed in graphene-N,N-dimethylformamide (DMF) nanofluids of approximately 25% and 12% for thermal conductivity and heat capacity, respectively. The blue shift of several Raman bands (max. ~ 4 cm-1) with increasing graphene concentration in DMF and DMAc nanofluids suggested that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. In parallel, numerical simulations based on density functional theory (DFT) and molecular dynamics (MD) showed a parallel orientation of DMF towards graphene, favoring π–π stacking and contributing to the modification of the Raman spectra. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the thermal properties of the fluid. Similar studies were also performed in graphene-N-methyl-2-pyrrolidinone nanofluids, however, no modification of the thermal conductivity or the Raman spectra was observed. All these observations together suggest that there is a correlation between the modification of the vibrational spectra and the increase in the thermal conductivity of the nanofluids. In light of these results, the mechanisms suggested in the literature to explain the enhancement of thermal conductivity in nanofluids were discussed and some of them were discarded. The second line of research focused on the development and characterization of novel molten salts formulations with low-melting temperature and high thermal stability. In this regard, two novel formulations of six components based on nitrates with a melting temperature of 60-75 °C and a thermal stability up to ~ 500 °C were synthesized. Moreover, the complexity of the samples led to establish a series of experimental methods which are proposed for the melting temperature detection of these materials as an alternative to conventional calorimetry. These methods are Raman spectroscopy, three-omega technique, and optical transmission

    Heat transfer fluids : from fundamental aspects of graphene nanofluids at room temperature to molten salts formulations for solar-thermal conversion

    Get PDF
    Departament responsable de la tesi: Departament de Química.Los fluidos de transferencia de calor, y en particular los nanofluidos, se pueden considerar un elemento esencial en diversos sectores industriales y su rendimiento es clave para una adecuada aplicación en tecnologías que van desde la gestión térmica y la refrigeración, a la generación de energía solar térmica y eléctrica mediante el uso de intercambiadores de calor. Estas industrias necesitan fluidos de transferencia de calor con un rango de temperatura del líquido más amplio y mejores prestaciones en la transferencia de calor que los fluidos convencionales. Todos los fluidos parecen beneficiarse de la dispersión de nanopartículas sólidas, tanto aquellos usados en aplicaciones de baja temperatura y temperatura ambiente, como aquellos que funden a más alta temperatura (p. ej. sales fundidas). La dispersión de nanopartículas conduce a la obtención de nanofluidos que con frecuencia presentan mejores conductividades térmicas y/o calores específicos en comparación con los fluidos base. Sin embargo hay algunas excepciones. En la bibliografía podemos encontrar resultados contradictorios acerca de la mejora de las propiedades térmicas en nanofluidos, lo cual hace que sea necesario un estudio de estos materiales en mayor profundidad. Por otra parte, la naturaleza líquida de estos materiales plantea un verdadero desafío, tanto desde el punto de vista experimental como en relación al marco conceptual.El trabajo que se presenta en esta tesis ha abordado dos retos diferentes relacionados con los fluidos de transferencia de calor y los nanofluidos. En primer lugar, se llevó a cabo un estudio riguroso y sistemático de las propiedades térmicas, morfológicas, reológicas, de estabilidad, acústicas y vibracionales de nanofluidos de grafeno en disolventes orgánicos. Observamos un gran aumento de la conductividad térmica de hasta un 48% y un aumento del 18% en la capacidad calorífica de los nanofluidos de grafeno en N,N-dimetilacetamida (DMAc). También se observó una mejora significativa en los nanofluidos de grafeno en N,N-dimetilformamida (DMF) del orden del 25% y 12% para la conductividad térmica y la capacidad calorífica, respectivamente. El desplazamiento de varias bandas del espectro Raman de DMF y DMAc hacia altas frecuencias (máx. ̃ 4 cm-1) al aumentar la concentración de grafeno, sugirió que éste tiene la capacidad de afectar a las moléculas de disolvente a larga distancia, en términos de energía vibracional. En paralelo, las simulaciones numéricas basadas en la teoría funcional de la densidad (DFT) y dinámica molecular (MD) mostraron una orientación paralela de DMF hacia el grafeno, favoreciendo la interacción π-π y contribuyendo a la modificación de los espectros de Raman. Además, se observó un orden local de las moléculas de DMF alrededor del grafeno, lo que sugiere que tanto este tipo especial de interacción como el orden local inducido pueden contribuir a la mejora de las propiedades térmicas del fluido. También se realizaron estudios similares en nanofluidos de grafeno disperso en 1-metil-2-pirrolidona, sin embargo, no se observó ninguna modificación de la conductividad térmica o de los espectros de Raman. Todas estas observaciones juntas sugieren que existe una correlación entre la modificación de los espectros vibracionales y el aumento de la conductividad térmica de los nanofluidos. En vista de los resultados, se discutieron y descartaron algunos de los mecanismos propuestos para explicar la mejora de la conductividad térmica en nanofluidos.La segunda línea de investigación se centró en el desarrollo y caracterización de nuevas formulaciones de sales fundidas con baja temperatura de fusión y alta estabilidad térmica. Con este propósito, se sintetizaron dos nuevas formulaciones de seis componentes basadas en nitratos con una temperatura de fusión de 60-75 °C y una estabilidad térmica de aprox. 500 °C. Por otro lado, la complejidad de las muestras llevó a establecer una serie de métodos experimentales que se proponen para la detección del punto de fusión de estos materiales como una alternativa a la calorimetría convencional, estas técnicas son: espectroscopia Raman, técnica 3ω y transmisión óptica.Heat transfer fluids and nanofluids constitute an important element in the industry and their performance is key to the successful application in technologies that go from heat management and cooling to heat exchangers in thermal-solar energy and electricity generation. These industries demand heat transfer fluids with a wider liquid temperature range and better thermal performance than the conventional fluids. From low-temperature fluids to high-temperature molten salts, these fluids seem to benefit from the dispersion of solid nanoparticles, leading to nanofluids which frequently feature improved thermal conductivities and/or specific heats as compared with the bare fluids. However, there are some exceptions. Contradictory reports make it necessary to study these materials in greater depth than has been usual. Yet, the liquid nature of these materials poses a real challenge, both from the experimental point of view and from the conceptual framework. The work reported in this thesis has tackled two different challenges related to heat transfer fluids and nanofluids. In the first place, a careful and systematic study of thermal, morphological, rheological, stability, acoustic and vibrational properties of graphene-based nanofluids was carried out. We observed a huge increase of up to 48% in thermal conductivity and 18% in heat capacity of graphene-N,N-dimethylacetamide (DMAc) nanofluids. A significant enhancement was also observed in graphene-N,N-dimethylformamide (DMF) nanofluids of approximately 25% and 12% for thermal conductivity and heat capacity, respectively. The blue shift of several Raman bands (max. ~ 4 cm-1) with increasing graphene concentration in DMF and DMAc nanofluids suggested that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. In parallel, numerical simulations based on density functional theory (DFT) and molecular dynamics (MD) showed a parallel orientation of DMF towards graphene, favoring π-π stacking and contributing to the modification of the Raman spectra. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the thermal properties of the fluid. Similar studies were also performed in graphene-N-methyl-2-pyrrolidinone nanofluids, however, no modification of the thermal conductivity or the Raman spectra was observed. All these observations together suggest that there is a correlation between the modification of the vibrational spectra and the increase in the thermal conductivity of the nanofluids. In light of these results, the mechanisms suggested in the literature to explain the enhancement of thermal conductivity in nanofluids were discussed and some of them were discarded. The second line of research focused on the development and characterization of novel molten salts formulations with low-melting temperature and high thermal stability. In this regard, two novel formulations of six components based on nitrates with a melting temperature of 60-75 °C and a thermal stability up to ~ 500 °C were synthesized. Moreover, the complexity of the samples led to establish a series of experimental methods which are proposed for the melting temperature detection of these materials as an alternative to conventional calorimetry. These methods are Raman spectroscopy, three-omega technique, and optical transmission

    On the enhancement of the thermal conductivity of graphene-based nanofluids

    Get PDF
    Trabajo presentado a la 18th International Conference on Nanotechnology (IEEE-NANO), celebrada en Cork (Irlanda) del 23 al 26 de julio de 2018.Heat transfer fluids have been extensively used in both low-temperature and high temperature applications (e.g. microelectronics cooling and concentrated solar power). However, their low thermal conductivity is still a limit on performance. One way to enhance thermal properties is to disperse nanomaterials, such as graphene flakes in the base fluid. In this work, we have developed highly stable DMAcgraphene nanofluids with enhanced thermal properties. Furthermore, the displacement of several Raman bands as a function of graphene concentration in DMAc suggests that the solvent molecules are able to interact with graphene surfaces strongly.We acknowledge support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295) and funding from the CERCA Programme/Generalitat de Catalunya. Funding from the Spanish Ministry (MINECO-FEDER MAT2015-68394-R NaCarFLOW) and PHENTOM (FIS2015-70862-P) are acknowledged.Peer reviewe

    Modification of the raman spectra in graphene-based nanofluids and its correlation with thermal properties

    No full text
    Altres ajuts: CERCA Programme/ Generalitat de CatalunyaIt is well known that by dispersing nanoparticles in a fluid, the thermal conductivity of the resulting nanofluid tends to increase with the concentration of nanoparticles. However, it is not clear what the mechanism behind this phenomenon is. Raman spectroscopy is a characterization technique connecting the molecular and macroscopic world, and therefore, it can unravel the puzzling effect exerted by the nanomaterial on the fluid. In this work, we report on a comparative study on the thermal conductivity, vibrational spectra and viscosity of graphene nanofluids based on three different amides: N, N-dimethylacetamide (DMAc); N, N-dimethylformamide (DMF); and N-methyl-2-pyrrolidinone (NMP). A set of concentrations of highly stable surfactant-free graphene nanofluids developed in-house was prepared and characterized. A correlation between the modification of the vibrational spectra of the fluids and an increase in their thermal conductivity in the presence of graphene was confirmed. Furthermore, an explanation of the non-modification of the thermal conductivity in graphene-NMP nanofluids is given based on its structure and a peculiar arrangement of the fluid

    Modification of the Raman Spectra in Graphene-Based Nanofluids and Its Correlation with Thermal Properties

    Get PDF
    It is well known that by dispersing nanoparticles in a fluid, the thermal conductivity of the resulting nanofluid tends to increase with the concentration of nanoparticles. However, it is not clear what the mechanism behind this phenomenon is. Raman spectroscopy is a characterization technique connecting the molecular and macroscopic world, and therefore, it can unravel the puzzling effect exerted by the nanomaterial on the fluid. In this work, we report on a comparative study on the thermal conductivity, vibrational spectra and viscosity of graphene nanofluids based on three different amides: N, N-dimethylacetamide (DMAc); N, N-dimethylformamide (DMF); and N-methyl-2-pyrrolidinone (NMP). A set of concentrations of highly stable surfactant-free graphene nanofluids developed in-house was prepared and characterized. A correlation between the modification of the vibrational spectra of the fluids and an increase in their thermal conductivity in the presence of graphene was confirmed. Furthermore, an explanation of the non-modification of the thermal conductivity in graphene-NMP nanofluids is given based on its structure and a peculiar arrangement of the fluid

    Unveiling mechanochemistry: Kinematic-kinetic approach for the prediction of mechanically induced reactions

    No full text
    Mechanochemistry has attracted a lot of attention over the last few decades with a rapid growth in the number of publications due to its unique features. However, very little is known about how mechanical energy is converted into chemical energy. Most of the published works using mechanochemistry neglect the required attention to the experimental parameters and their effect over the resulting products, what makes extremely difficult to reproduce the results from lab to lab. Moreover, if it is taken into consideration the broad range of experimental conditions used in different studies, it is quite difficult to compare results and set optimum conditions. As a result, mechanochemistry is generally viewed as a “black box”. The aim of this work is to provide some insight into mechanochemistry. Thus, a simple kinematic-kinetic approach that allows the full parametrization of mechanically induced reactions is proposed. In an analogous way to thermally activated process, it is shown that kinetic modeling can serve to parametrize and model mechanically induced reactions as a function of the milling parameters with great reliability, thereby gaining prediction capability. As a way of example, this methodology has been applied for the first time to the mechanochemical reaction of Co and Sb to form CoSb, a skutterudite-type thermoelectric material. Moreover, the universality of this methodology has also been validated with data from the literature. A key feature of the proposed kinematic-kinetic approach is that it can be extrapolated to other mechanically induced reactions, either inorganic or organic

    Development of low-melting point molten salts and detection of solid-to-liquid transitions by alternative techniques to DSC

    No full text
    The 'Solar salt' (60% NaNO-40% KNO, wt. %) is the most used heat transfer and storage material in high temperature CSP systems. The main drawback is its high melting temperature of 228 °C, which requires extra-energy to keep it in the liquid state and avoid damage to pipes at low temperatures. Multi-component salts are combinations of different cations and anions. The difference in size of the ions hinders the crystallization of the material and provides lower melting temperatures. Multi-component salts are considered in this study to replace simpler combinations, such as binary and ternary eutectic mixtures. Herein, we report on two novel six-component nitrates with a melting temperature of 60-75 °C and a thermal stability up to ~500 °C under a linear heating program in N atmosphere. Properties such as the thermal conductivity in solid and molten state, heat capacity and vibrational spectra were evaluated. The study of the thermal behaviour of these materials using differential scanning calorimetry was insufficient, hence alternative and complementary techniques were used, such as: the three-omega technique, optical transmission and Raman spectroscopy. Multi-component salts were found to solidify as amorphous solids even at slow cooling rates and water was found to behave as a catalyst of crystallization
    corecore